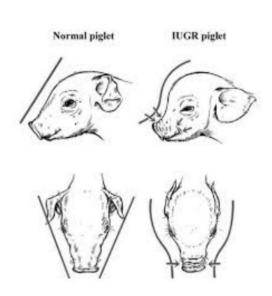


Assessment of piglet maturity at birth using computer vision

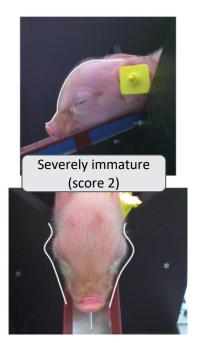
Laurence Maignel, Richard Mailhot, Alexandra Carrier and Patrick Gagnon


BACKGROUND

- R&D project 'New selection tools to improve piglet pre-weaning survival'
- Pilot studies on novel technologies to automate the collection of new phenotypes:
 - Piglet traits
 - maturity at birth
 - Birth to weaning growth
 - Sow traits
 - Behaviour around farrowing
 - Behaviour during lactation


WHY FOCUS ON PIGLET MATURITY?

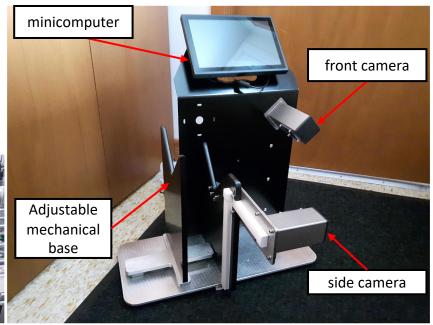
- Improvement in litter size → \(\sigma\) number of small piglets
- 2 types of small piglets:
 - SGA = Small for gestational age
 - IUGR = intra-uterine growth retardation (=immature) specific head characteristics
- Maturity = complete development allowing survival at birth
- Most immature piglets have a low birth weight, but not all small piglets are immature!
- Heritable (sow trait and piglet trait)



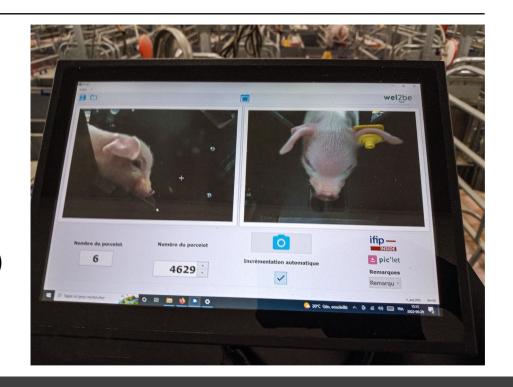
Maturity at birth: visual scoring (as suggested by IFIP)

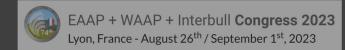
3 levels : 0/1/2

For experienced workers, the scoring takes about 13 seconds/piglet + data entry


PIC'LET (PICture of pigLET)

- Computer vision system developed to automatically assess piglet maturity using deep learning
- Collaboration between NeoTec Vision and IFIP




PIC'LET PROTOTYPE

Three levels of maturity - similar to visual scoring:

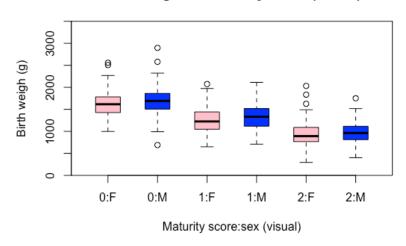
- 0 = Normal (mature)
- 1 = Mild (mildly immature)
- 2 = Severe (severely immature)

CDPQ RESEARCH AND TRAINING SOW BARN

- Located in Armagh (Quebec)
- Inaugurated in 2020
- 675 head sow barn farrow to wean
- 4-week batch management
- 1 large farrowing room with 135 crates
- Novel technologies in all sections

Testing the Pic'let prototype at the CDPQ sow barn


- Objective = test a tool developped on other populations and a different environment to see if it is directly transposable or requires adjustments
- Testing of 47 litters (692 newborn piglets)
 - Pic'let classification (0/1/2)
 - Visual scoring (0/1/2)
 - Body measures
 - body length
 - head length
 - between-eye distance
 - chest circumference
 - femur length

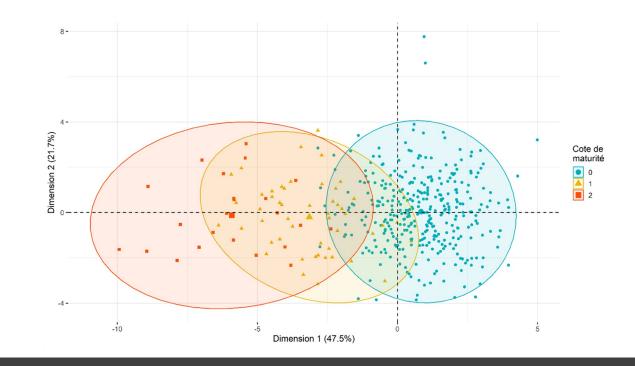


RESULTS

Birth weight vs maturity score (visual)

	#obs	Results		
		0	1	2
		Normal	Mild	Severe
Pic'let	692	46.1%	41.5%	12.4%
Visual scoring	692	51.9%	33.7%	14.5%

Only 59% of matching scores


RESULTS - PRINCIPAL COMPONENT ANALYSIS

1st dimension:

- Weight
- Circumference
- Body length
- Femur length

2nd dimension:

- Body Mass Index (BMI)
- Body Weight Index (BWI)
- Head length : body length

RESULTS - SCORES CONCORDANCE

Reference dataset

426 observations with matching visual score for all scorers (CDPQ+IFIP)

Reference

	0	1	2	
0	235	3	0	99 %
1	93	41	4	30 %
2	24	7	19	38 %
	66.8 %	80.4 %	82.6 %	69 %

PIC'LET prototype evaluation summary

- Robust and compact
- Easy to install and use
- Well adapted to farm conditions
- Automates scoring and data entry
- Scoring can be done at the same time as weighing

- Some camera issues (especially on side camera)
- All images are scored (good or not)
- Moderate concordance in our trial need to improve the image database
- Cost?

TAKE HOME MESSAGE

- Preliminary results on only 47 litters
- Device well designed for barn conditions
- Room for improvement in prediction accuracy
 - Communication with the developers to improve the picture database
- Future projects including piglet activity tracking during the first hours of life and video analysis of farrowing

REPORT AVAILABLE

For all questions: rmailhot@cdpq.ca laurence@ccsi.ca

Acknowledgements Research Project New selection tools to improve piglet pre-weaning survival

Research team

- Canadian Centre for Swine Improvement
- O Centre de développement du porc du Québec

Industry partners

Ferme R.Coutu

Financial Support

Agri-Science Program

